Newer
Older
#include <cpu/ee.hpp>
#include <common/manager.hpp>
#include <bitset>
#include <iostream>
EmotionEngine::EmotionEngine(ComponentManager* parent)
{
}
void EmotionEngine::tick()
{
/* Fetch next instruction. */
}
void EmotionEngine::reset_state()
{
/* Reset PC. */
pc = 0xbfc00000;
instr.value = instr.pc = 0;
next_instr.value = next_instr.pc = 0;
}
void EmotionEngine::fetch_instruction()
{
/* Handle branch delay slots by prefetching the next one */
instr = next_instr;
next_instr.value = read<uint32_t>(pc);
next_instr.pc = pc;
/* Update PC */
fmt::print("PC: {:#x} instruction: {:#x} ", instr.pc, instr.value);
if (skip_branch_delay)
{
skip_branch_delay = false;
std::cout << "SKIPPED delay slot\n";
return;
}
switch(instr.opcode)
{
case COP0_OPCODE: op_cop0(); break;
case SPECIAL_OPCODE: op_special(); break;
case 0b101011: op_sw(); break;
case 0b001010: op_slti(); break;
case 0b001101: op_ori(); break;
case 0b001000: op_addi(); break;
case 0b011110: op_lq(); break;
case 0b001111: op_lui(); break;
case 0b001001: op_addiu(); break;
case 0b011100: op_mmi(); break;
case 0b111111: op_sd(); break;
case 0b000011: op_jal(); break;
case 0b000001: op_regimm(); break;
case 0b001100: op_andi(); break;
case 0b000100: op_beq(); break;
case 0b010100: op_beql(); break;
case 0b001011: op_sltiu(); break;
case 0b010101: op_bnel(); break;
case 0b100000: op_lb(); break;
case 0b111001: op_swc1(); break;
case 0b100100: op_lbu(); break;
case 0b110111: op_ld(); break;
case 0b000010: op_j(); break;
case 0b100011: op_lw(); break;
case 0b101000: op_sb(); break;
case 0b000110: op_blez(); break;
case 0b000111: op_bgtz(); break;
fmt::print("[ERROR] Unimplemented opcode: {:#06b}\n", instr.opcode & 0x3F);
template <typename T>
T EmotionEngine::read(uint32_t addr)
{
if (addr >= 0x70000000 && addr < 0x70004000) /* Read from scratchpad */
return *(uint32_t*)&scratchpad[addr & 0x3FFC];
else
return manager->read<T>(addr);
}
template <typename T>
void EmotionEngine::write(uint32_t addr, T data)
{
if (addr >= 0x70000000 && addr < 0x70004000)
*(uint32_t*)&scratchpad[addr & 0x3FFC] = data;
else
manager->write<T>(addr, data);
}
void EmotionEngine::op_cop0()
{
/* The manual says that COP0 is only accessible in kernel mode
There are exceptions but we will deal with those later. */
if (cop0.get_operating_mode() != OperatingMode::KERNEL_MODE)
return;
uint16_t type = instr.value >> 21 & 0x1F;
switch (type)
switch(instr.value & 0x7)
{
case 0b000: op_mfc0(); break;
default:
fmt::print("[ERROR] Unimplemented COP0 MF0 instruction: {:#03b}\n", instr.value & 0x7);
std::exit(1);
}
break;
case COP0_MT0:
switch (instr.value & 0x7)
{
case 0b000: op_mtc0(); break;
default:
fmt::print("[ERROR] Unimplemented COP0 MT0 instruction: {:#03b}\n", instr.value & 0x7);
std::exit(1);
}
break;
case COP0_TLB:
if ((instr.value & 0x3F) == 0b000010) op_tlbwi();
break;
fmt::print("[ERROR] Unimplemented COP0 instruction: {:#05b}\n", type);
std::exit(1);
}
}
void EmotionEngine::op_mfc0()
{
uint16_t rd = (instr.value >> 11) & 0x1F;
uint16_t rt = (instr.value >> 16) & 0x1F;
fmt::print("MFC0: GPR[{:d}] = COP0_REG[{:d}] ({:#x})\n", rt, rd, cop0.regs[rd]);
}
void EmotionEngine::op_special()
{
switch(instr.r_type.funct)
{
case 0b000000: op_sll(); break;
case 0b001000: op_jr(); break;
case 0b001001: op_jalr(); break;
case 0b000011: op_sra(); break;
case 0b100001: op_addu(); break;
case 0b101101: op_daddu(); break;
case 0b100101: op_or(); break;
case 0b011000: op_mult(); break;
case 0b011011: op_divu(); break;
case 0b010010: op_mflo(); break;
case 0b011010: op_div(); break;
case 0b010000: op_mfhi(); break;
case 0b101011: op_sltu(); break;
case 0b100011: op_subu(); break;
fmt::print("[ERROR] Unimplemented SPECIAL instruction: {:#06b}\n", (uint16_t)instr.r_type.funct);
void EmotionEngine::op_regimm()
{
uint16_t type = (instr.value >> 16) & 0x1F;
switch(type)
{
case 0b00001: op_bgez(); break;
default:
fmt::print("[ERROR] Unimplemented REGIMM instruction: {:#05b}\n", type);
void EmotionEngine::op_sw()
{
uint16_t base = instr.i_type.rs;
uint16_t rt = instr.i_type.rt;
int16_t offset = (int16_t)instr.i_type.immediate;
fmt::print("SW: Writing GPR[{:d}] ({:#x}) to address {:#x} = GPR[{:d}] ({:#x}) + {:d}\n", rt, data, vaddr, base, gpr[base].word[0], offset);
fmt::print("[ERROR] SW: Address {:#x} is not aligned\n", vaddr);
std::exit(1); /* NOTE: SignalException (AddressError) */
}
}
void EmotionEngine::op_sll()
{
uint16_t rt = instr.r_type.rt;
uint16_t rd = instr.r_type.rd;
gpr[rd].dword[0] = (uint64_t)(int32_t)(gpr[rt].word[0] << sa);
else fmt::print("SLL: GPR[{:d}] = GPR[{:d}] ({:#x}) << {:d}\n", rd, rt, gpr[rt].dword[0], sa);
}
void EmotionEngine::op_slti()
{
uint16_t rs = instr.i_type.rs;
uint16_t rt = instr.i_type.rt;
int64_t imm = (int64_t)(int16_t)instr.i_type.immediate;
gpr[rt].dword[0] = (int64_t)gpr[rs].dword[0] < imm;
fmt::print("SLTI: GPR[{:d}] = GPR[{:d}] ({:#x}) < {:#x}\n", rt, rs, gpr[rs].dword[0], imm);
}
void EmotionEngine::op_bne()
{
uint16_t rt = instr.i_type.rt;
uint16_t rs = instr.i_type.rs;
int32_t imm = (int16_t)instr.i_type.immediate;
int32_t offset = imm << 2;
fmt::print("BNE: IF GPR[{:d}] ({:#x}) != GPR[{:d}] ({:#x}) THEN PC += {:#x}\n", rt, gpr[rt].dword[0], rs, gpr[rs].dword[0], offset);
}
void EmotionEngine::op_ori()
{
uint16_t rs = instr.i_type.rs;
uint16_t rt = instr.i_type.rt;
fmt::print("ORI: GPR[{:d}] = GPR[{:d}] ({:#x}) | {:#x}\n", rt, rs, gpr[rs].dword[0], imm);
gpr[rt].dword[0] = gpr[rs].dword[0] | (uint64_t)imm;
}
void EmotionEngine::op_addi()
{
uint16_t rs = instr.i_type.rs;
uint16_t rt = instr.i_type.rt;
int16_t imm = (int16_t)instr.i_type.immediate;
/* TODO: Overflow detection */
fmt::print("ADDI: GPR[{:d}] = GPR[{:d}] ({:#x}) + {:#x}\n", rt, rs, gpr[rs].dword[0], imm);
}
void EmotionEngine::op_lq()
{
uint16_t rt = instr.i_type.rt;
uint16_t base = instr.i_type.rs;
int16_t imm = (int16_t)instr.i_type.immediate;
uint32_t vaddr = (gpr[base].word[0] + imm) & 0b0000;
gpr[rt].dword[0] = read<uint64_t>(vaddr);
gpr[rt].dword[1] = read<uint64_t>(vaddr + 8);
fmt::print("LQ: GPR[{:d}] = {:#x} from address {:#x} = GPR[{:d}] ({:#x} + {:#x}\n", rt, gpr[rt].dword[0], vaddr, base, gpr[base].word[0], imm);
}
void EmotionEngine::op_lui()
{
uint16_t rt = instr.i_type.rt;
uint32_t imm = instr.i_type.immediate;
gpr[rt].dword[0] = (int64_t)(int32_t)(imm << 16);
fmt::print("LUI: GPR[{:d}] = {:#x}\n", rt, gpr[rt].dword[0]);
}
void EmotionEngine::op_jr()
{
uint16_t rs = instr.i_type.rs;
pc = gpr[rs].word[0];
fmt::print("JR: Jumped to GPR[{:d}] = {:#x}\n", rs, pc);
}
void EmotionEngine::op_sync()
{
fmt::print("SYNC\n");
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
void EmotionEngine::op_lb()
{
uint16_t rt = instr.i_type.rt;
uint16_t base = instr.i_type.rs;
int16_t offset = (int16_t)instr.i_type.immediate;
uint32_t vaddr = offset + gpr[base].word[0];
gpr[rt].dword[0] = (int64_t)read<uint8_t>(vaddr);
fmt::print("LB: GPR[{:d}] = {:#x} from address {:#x} = GPR[{:d}] ({:#x}) + {:#x}\n", rt, gpr[rt].dword[0], vaddr, base, gpr[base].word[0], offset);
}
void EmotionEngine::op_swc1()
{
uint16_t base = instr.i_type.rs;
uint16_t ft = instr.i_type.rt;
int16_t offset = (int16_t)instr.i_type.immediate;
uint32_t vaddr = offset + gpr[base].word[0];
uint32_t data = fpr[ft].word[0];
fmt::print("SWC1: Writing FPR[{:d}] ({:#x}) to address {:#x} = GPR[{:d}] ({:#x}) + {:d}\n", ft, data, vaddr, base, gpr[base].word[0], offset);
if ((vaddr & 0b11) != 0)
{
fmt::print("[ERROR] SW: Address {:#x} is not aligned\n", vaddr);
std::exit(1); /* NOTE: SignalException (AddressError) */
}
else
write<uint32_t>(vaddr, data);
}
void EmotionEngine::op_lbu()
{
uint16_t rt = instr.i_type.rt;
uint16_t base = instr.i_type.rs;
int16_t offset = (int16_t)instr.i_type.immediate;
uint32_t vaddr = offset + gpr[base].word[0];
gpr[rt].dword[0] = read<uint8_t>(vaddr);
fmt::print("LBU: GPR[{:d}] = {:#x} from address {:#x} = GPR[{:d}] ({:#x}) + {:#x}\n", rt, gpr[rt].dword[0], vaddr, base, gpr[base].word[0], offset);
}
void EmotionEngine::op_ld()
{
uint16_t rt = instr.i_type.rt;
uint16_t base = instr.i_type.rs;
int16_t offset = (int16_t)instr.i_type.immediate;
uint32_t vaddr = offset + gpr[base].word[0];
gpr[rt].dword[0] = read<uint64_t>(vaddr);
fmt::print("LD: GPR[{:d}] = {:#x} from address {:#x} = GPR[{:d}] ({:#x}) + {:#x}\n", rt, gpr[rt].dword[0], vaddr, base, gpr[base].word[0], offset);
}
void EmotionEngine::op_j()
{
uint32_t instr_index = instr.j_type.target;
pc = (pc & 0xF0000000) | (instr_index << 2);
fmt::print("J: Jumping to PC = {:#x}\n", pc);
}
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
void EmotionEngine::op_sb()
{
uint16_t base = instr.i_type.rs;
uint16_t rt = instr.i_type.rt;
int16_t offset = (int16_t)instr.i_type.immediate;
uint32_t vaddr = offset + gpr[base].word[0];
uint16_t data = gpr[rt].word[0] & 0xFF;
fmt::print("SB: Writing GPR[{:d}] ({:#x}) to address {:#x} = GPR[{:d}] ({:#x}) + {:d}\n", rt, data, vaddr, base, gpr[base].word[0], offset);
write<uint8_t>(vaddr, data);
}
void EmotionEngine::op_div()
{
uint16_t rt = instr.i_type.rt;
uint16_t rs = instr.i_type.rs;
if (gpr[rt].word[0] != 0)
{
int32_t q = (int32_t)gpr[rs].word[0] / (int32_t)gpr[rt].word[0];
lo0 = (int64_t)(int32_t)(q & 0xFFFFFFFF);
int32_t r = (int32_t)gpr[rs].word[0] % (int32_t)gpr[rt].word[0];
hi0 = (int64_t)(int32_t)(r & 0xFFFFFFFF);
fmt::print("DIV: LO0 = GPR[{:d}] ({:#x}) / GPR[{:d}] ({:#x})\n", rs, gpr[rs].word[0], rt, gpr[rt].word[0]);
}
else
{
fmt::print("[ERROR] DIV: Division by zero!\n");
std::abort();
}
}
void EmotionEngine::op_mfhi()
{
uint16_t rd = instr.r_type.rd;
gpr[rd].dword[0] = hi0;
fmt::print("MFHI: GPR[{:d}] = HI0 ({:#x})\n", rd, hi0);
}
void EmotionEngine::op_sltu()
{
uint16_t rd = instr.r_type.rd;
uint16_t rs = instr.r_type.rs;
uint16_t rt = instr.r_type.rt;
gpr[rd].dword[0] = gpr[rs].dword[0] < gpr[rt].dword[0];
fmt::print("SLTU: GPR[{:d}] = GPR[{:d}] ({:#x}) < GPR[{:d}] ({:#x})\n", rd, rs, gpr[rs].dword[0], rt, gpr[rt].dword[0]);
}
void EmotionEngine::op_blez()
{
int32_t imm = (int16_t)instr.i_type.immediate;
uint16_t rs = instr.i_type.rs;
int32_t offset = imm << 2;
if (gpr[rs].dword[0] <= 0)
pc += offset - 4;
fmt::print("BLEZ: IF GPR[{:d}] ({:#x}) <= 0 THEN PC += {:#x}\n", rs, gpr[rs].dword[0], offset);
}
void EmotionEngine::op_subu()
{
uint16_t rd = instr.r_type.rd;
uint16_t rs = instr.r_type.rs;
uint16_t rt = instr.r_type.rt;
uint32_t result = gpr[rs].dword[0] - gpr[rt].dword[0];
gpr[rd].dword[0] = (int64_t)(int32_t)(result & 0xFFFFFFFF);
fmt::print("SUBU: GPR[{:d}] = GPR[{:d}] ({:#x}) - GPR[{:d}] ({:#x})\n", rd, rs, gpr[rs].dword[0], rt, gpr[rt].dword[0]);
}
void EmotionEngine::op_bgtz()
{
int32_t imm = (int16_t)instr.i_type.immediate;
uint16_t rs = instr.i_type.rs;
int32_t offset = imm << 2;
if (gpr[rs].dword[0] > 0)
pc += offset - 4;
fmt::print("BGTZ: IF GPR[{:d}] ({:#x}) > 0 THEN PC += {:#x}\n", rs, gpr[rs].dword[0], offset);
}
void EmotionEngine::op_lw()
{
uint16_t rt = instr.i_type.rt;
uint16_t base = instr.i_type.rs;
int16_t offset = (int16_t)instr.i_type.immediate;
uint32_t vaddr = offset + gpr[base].word[0];
gpr[rt].dword[0] = (int32_t)read<uint32_t>(vaddr);
fmt::print("LW: GPR[{:d}] = {:#x} from address {:#x} = GPR[{:d}] ({:#x}) + {:#x}\n", rt, gpr[rt].dword[0], vaddr, base, gpr[base].word[0], offset);
}
void EmotionEngine::op_addiu()
{
uint16_t rt = instr.i_type.rt;
uint16_t rs = instr.i_type.rs;
int16_t imm = (int16_t)instr.i_type.immediate;
fmt::print("ADDIU: GPR[{:d}] = GPR[{:d}] ({:#x}) + {:#x}\n", rt, rs, gpr[rs].dword[0], imm);
}
void EmotionEngine::op_tlbwi()
{
}
void EmotionEngine::op_mtc0()
{
uint16_t rt = (instr.value >> 16) & 0x1F;
uint16_t rd = (instr.value >> 11) & 0x1F;
cop0.regs[rd] = gpr[rt].word[0];
fmt::print("MTC0: COP0[{:d}] = GPR[{:d}] ({:#x})\n", rd, rt, gpr[rt].word[0]);
}
void EmotionEngine::op_mmi()
{
switch(instr.r_type.sa)
{
case 0b10000: op_madd1(); break;
default:
fmt::print("[ERROR] Unimplemented MMI instruction: {:#05b}\n", (uint16_t)instr.r_type.sa);
std::exit(1);
}
}
void EmotionEngine::op_madd1()
{
uint16_t rd = instr.r_type.rd;
uint16_t rs = instr.r_type.rs;
uint16_t rt = instr.r_type.rt;
uint64_t lo = lo1 & 0xFFFFFFFF;
uint64_t hi = hi1 & 0xFFFFFFFF;
int64_t result = (hi << 32 | lo) + (int64_t)gpr[rs].word[0] * (int64_t)gpr[rt].word[0];
lo1 = (int64_t)(int32_t)(result & 0xFFFFFFFF);
hi1 = (int64_t)(int32_t)(result >> 32);
fmt::print("MADD1: GPR[{:d}] = LO1 = {:#x} and HI1 = {:#x}\n", lo1, hi1);
}
void EmotionEngine::op_jalr()
{
uint16_t rs = instr.r_type.rs;
uint16_t rd = instr.r_type.rd;
gpr[rd].dword[0] = pc + 4; /* Normally this should be PC + 8 but we compensate for the prefetching with -4 */
pc = gpr[rs].word[0];
fmt::print("JALR: Jumping to PC = GPR[{:d}] ({:#x}) with link address {:#x}\n", rs, pc, gpr[rd].dword[0]);
}
void EmotionEngine::op_sd()
{
uint16_t base = instr.i_type.rs;
uint16_t rt = instr.i_type.rt;
int16_t offset = (int16_t)instr.i_type.immediate;
uint32_t vaddr = offset + gpr[base].word[0];
fmt::print("[ERROR] SD: Address {:#x} is not aligned\n", vaddr);
std::exit(1); /* NOTE: SignalException (AddressError) */
}
fmt::print("SD: Writing GPR[{:d}] ({:#x}) to address {:#x} = GPR[{:d}] ({:#x}) + {:#x}\n", rt, data, vaddr, base, gpr[base].word[0], offset);
void EmotionEngine::op_jal()
{
uint32_t instr_index = instr.j_type.target;
fmt::print("JAL: Jumping to PC = {:#x} with return link address {:#x}\n", pc, gpr[31].dword[0]);
}
void EmotionEngine::op_sra()
{
uint16_t sa = instr.r_type.sa;
uint16_t rd = instr.r_type.rd;
uint16_t rt = instr.r_type.rt;
gpr[rd].dword[0] = (int64_t)(gpr[rt].word[0] >> sa);
fmt::print("SRA: GPR[{:d}] = GPR[{:d}] ({:#x}) >> {:d}\n", rd, rt, gpr[rt].word[0], sa);
}
void EmotionEngine::op_bgez()
{
fmt::print("BGEZ: IF GPR[{:d}] ({:#x}) > 0 THEN PC += {:#x}\n", rs, gpr[rs].word[0], offset);
}
void EmotionEngine::op_addu()
{
uint16_t rt = instr.r_type.rt;
uint16_t rs = instr.r_type.rs;
uint16_t rd = instr.r_type.rd;
gpr[rd].dword[0] = (int32_t)(gpr[rs].dword[0] + gpr[rt].dword[0]);
fmt::print("ADDU: GPR[{:d}] = GPR[{:d}] ({:#x}) + GPR[{:d}] ({:#x})\n", rd, rs, gpr[rs].dword[0], rt, gpr[rt].dword[0]);
}
void EmotionEngine::op_daddu()
{
uint16_t rt = instr.r_type.rt;
uint16_t rs = instr.r_type.rs;
uint16_t rd = instr.r_type.rd;
gpr[rd].dword[0] = gpr[rs].dword[0] + gpr[rt].dword[0];
fmt::print("DADDU: GPR[{:d}] = GPR[{:d}] ({:#x}) + GPR[{:d}] ({:#x})\n", rd, rs, gpr[rs].dword[0], rt, gpr[rt].dword[0]);
}
void EmotionEngine::op_andi()
{
uint16_t rt = instr.i_type.rt;
uint16_t rs = instr.i_type.rs;
uint64_t imm = instr.i_type.immediate;
gpr[rt].dword[0] = gpr[rs].dword[0] & imm;
fmt::print("ANDI: GPR[{:d}] = GPR[{:d}] ({:#x}) & {:#x}\n", rt, rs, gpr[rs].dword[0], imm);
}
void EmotionEngine::op_beq()
{
uint16_t rt = instr.i_type.rt;
uint16_t rs = instr.i_type.rs;
int32_t imm = (int32_t)instr.i_type.immediate;
int32_t offset = imm << 2;
fmt::print("BEQ: IF GPR[{:d}] ({:#x}) == GPR[{:d}] ({:#x}) THEN PC += {:#x}\n", rt, gpr[rt].dword[0], rs, gpr[rs].dword[0], offset);
}
void EmotionEngine::op_or()
{
uint16_t rt = instr.r_type.rt;
uint16_t rs = instr.r_type.rs;
uint16_t rd = instr.r_type.rd;
fmt::print("OR: GPR[{:d}] = GPR[{:d}] ({:#x}) | GPR[{:d}] ({:#x})\n", rd, rs, gpr[rs].dword[0], rt, gpr[rt].dword[0]);
gpr[rd].dword[0] = gpr[rs].dword[0] | gpr[rt].dword[0];
}
void EmotionEngine::op_mult()
{
uint16_t rt = instr.r_type.rt;
uint16_t rs = instr.r_type.rs;
uint16_t rd = instr.r_type.rd;
int64_t result = (int64_t)gpr[rs].word[0] * (int64_t)gpr[rt].word[0];
gpr[rd].dword[0] = lo0 = (int32_t)(result & 0xFFFFFFFF);
hi0 = (int32_t)(result >> 32);
fmt::print("MULT: GPR[{:d}] = LO0 = {:#x} and HI0 = {:#x}\n", rd, lo0, hi0);
}
void EmotionEngine::op_divu()
{
uint16_t rt = instr.i_type.rt;
uint16_t rs = instr.i_type.rs;
if (gpr[rt].word[0] != 0)
{
lo0 = (int64_t)(int32_t)(gpr[rs].word[0] / gpr[rt].word[0]);
hi0 = (int64_t)(int32_t)(gpr[rs].word[0] % gpr[rt].word[0]);
fmt::print("DIVU: LO0 = GPR[{:d}] ({:#x}) / GPR[{:d}] ({:#x})\n", rs, gpr[rs].word[0], rt, gpr[rt].word[0]);
std::abort();
}
}
void EmotionEngine::op_beql()
{
uint16_t rt = instr.i_type.rt;
uint16_t rs = instr.i_type.rs;
uint32_t imm = instr.i_type.immediate;
int32_t offset = (int32_t)(imm << 2);
if (gpr[rs].dword[0] == gpr[rt].dword[0])
fmt::print("BEQL: IF GPR[{:d}] ({:#x}) == GPR[{:d}] ({:#x}) THEN PC += {:#x}\n", rs, gpr[rs].dword[0], rt, gpr[rt].dword[0], offset);
}
void EmotionEngine::op_mflo()
{
uint16_t rd = instr.r_type.rd;
gpr[rd].dword[0] = lo0;
fmt::print("MFLO: GPR[{:d}] = LO0 ({:#x})\n", rd, lo0);
}
void EmotionEngine::op_sltiu()
{
uint16_t rt = instr.i_type.rt;
uint16_t rs = instr.i_type.rs;
uint64_t imm = instr.i_type.immediate;
gpr[rt].dword[0] = (gpr[rs].dword[0] < imm);
fmt::print("SLTIU: GPR[{:d}] = GPR[{:d}] ({:#x}) < {:#x}\n", rt, rs, gpr[rs].dword[0], imm);
}
void EmotionEngine::op_bnel()
{
uint16_t rt = instr.i_type.rt;
uint16_t rs = instr.i_type.rs;
uint32_t imm = instr.i_type.immediate;
int32_t offset = (int32_t)(imm << 2);
if (gpr[rs].dword[0] != gpr[rt].dword[0])
fmt::print("BNEL: IF GPR[{:d}] ({:#x}) != GPR[{:d}] ({:#x}) THEN PC += {:#x}\n", rs, gpr[rs].dword[0], rt, gpr[rt].dword[0], offset);
/* Template definitions. */
template uint32_t EmotionEngine::read<uint32_t>(uint32_t);
template uint64_t EmotionEngine::read<uint64_t>(uint32_t);
template uint8_t EmotionEngine::read<uint8_t>(uint32_t);
template void EmotionEngine::write<uint32_t>(uint32_t, uint32_t);
template void EmotionEngine::write<uint64_t>(uint32_t, uint64_t);
template void EmotionEngine::write<uint8_t>(uint32_t, uint8_t);